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In category-based induction (CBI), people use category information to predict unknown properties of
exemplars. When an item’s classification is uncertain, normative principles and Bayesian models suggest
that predictions should integrate information across all possible categories. However, researchers previ-
ously have found that people often base their predictions on only a single category. In the present studies,
we investigated the possible distinction between implicit and explicit processes in CBI. Predictions of an
object’s motion took the form of either a catching task (implicit) or a verbal answer (explicit). When
subjects made predictions implicitly (Experiment 1), they used categories as Bayesian models predict.
Explicit predictions (Experiment 2) showed clearly nonnormative use of categories. This distinction
between implicit and explicit processes was replicated with a within-subjects design (Experiment 3).
When subjects learned categories implicitly (categories were never mentioned) in Experiment 4, their
explicit predictions did not reflect integration of information across categories but again showed a
nonnormative pattern of category use. These results provide support for a distinction between implicit
and explicit processes in CBI and furthermore suggest that the same category knowledge may result in
normative or nonnormative responding, depending on the response mode.
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Our ability to infer information about a novel object based on its
category is the basis of much intelligent behavior. It aids us in
reasoning, social interactions, communication, and predictions. By
categorizing an object, we can make predictions about it even
though we have never encountered that particular object before.
Imagine yourself as a student at a new high school. If categories
did not exist, for each chair you came across you would have to
learn how to interact with it, what it does, and what you can do
with it. Thankfully, we do have categories, and when the teacher
tells you to take a seat, since you know that some of the objects in
the room belong to the category of chair, you know where to sit.
The same goes for making predictions about people. Because you
know that the person ordering you to take a seat belongs to the

category of teacher, you can predict that he or she has authority
over you. Based on this information, you decide to promptly obey.
Your behavior would have likely been quite different if you had
instead categorized that person as a classmate (or a class clown).

Induction is not always so simple, especially when categoriza-
tion is uncertain. Now imagine that you are heading to the parking
lot of your new school to cut class. You see someone else in the
parking lot, but you cannot quite make out who it is. It could be
either a teacher or a student. Do you keep going on your mission
to ditch class, or do you run back into school before this person
sees you? Based on the few characteristics you can observe, you
must make a prediction about whether the person will bring you to
the principal’s office (which, of course, leads to punishment).

To decide whether the unknown person will bring you to the
principal’s office, normatively you should take into account both
the possibility that this person is a teacher and the possibility that
he or she is a student. This type of reasoning is consistent with a
variety of normative views, including Bayesian approaches to
classification and prediction in which people weight different
possibilities by their prior likelihoods. Anderson (1991) proposed
such a model of category-based induction,1 in which the probabil-

1 In all our experiments, the categories are novel and equally probable,
so we ignore the prior probability component of Bayesian reasoning. We
continue to use the term Bayesian because of the common feature of
Bayesian models of induction that predictions are integrated across multi-
ple categories, weighted by their likelihood.
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ity that an object with observed features, F, has an unobserved
feature, j, is the weighted sum of the probabilities across all
categories k:

P�j�F� � �
k

P�k�F� � P�j�k�.
(1)

Thus, if you were a Bayesian class cutter, you would take the
probability that the unknown person is a teacher and multiply that
by the probability that a teacher would take you to the principal.
Next, you would take the probability that the person is a student
and multiply that by the probability that a student would turn you
in. The sum of the two products is the probability that you get sent
to the principal. This approach appears normatively correct, since
it takes into account your uncertainty and weights the strength of
the prediction according to each category’s likelihood. If you are
very certain that the person is a teacher, you should make a strong
prediction about the likelihood of punishment; if uncertain, you
should make a weaker prediction.

Past Research on Category-Based Induction Under
Uncertainty

Surprisingly, however, previous research on induction when
categorization is uncertain has found that people generally do not
normatively integrate information across categories. Malt, Ross,
and Murphy (1995), Ross and Murphy (1996), and Hayes and
Chen (2008) used vignettes about real-life situations to study
category-based induction when categorization is uncertain. For
example, subjects read a story that described an unknown person
who was most likely to be a real estate agent (the target category)
but who might have been a cable repairman or—in a different
story—a burglar (the secondary category). Subjects then predicted
the likelihood that the unknown person would show a specific
behavior—for example, “What is the probability that the man will
pay attention to the sturdiness of the doors on the house?” Because
this behavior is more consistent with a burglar than a cable
repairman, subjects given burglar as the secondary category should
give higher probabilities than those given cable repairman as the
secondary category. However, in most conditions subjects paid
attention only to the target category (the real estate agent) when
making predictions and ignored relevant information from the
secondary category.

Similar results have been found with artificial categories in
which the information known about the categories can be com-
pletely controlled (Hayes & Newell, 2009; Murphy & Ross, 1994,
2005; Verde, Murphy, & Ross, 2005). Murphy and Ross (1994)
presented subjects with geometric figures said to have been drawn
by children. Each figure had two features: shape and shading.
Subjects were told one feature of a new item drawn by one of the
children (e.g., shading). They then predicted the other feature (e.g.,
shape) and rated the likelihood that their prediction was correct.
These new items could belong to one of two children (categories).
Based on the distribution of items with the given feature, the item
was more likely to belong to the target category but might belong
to the secondary category. Murphy and Ross (1994) compared a
neutral and an increasing condition. The target category was iden-
tical in the two conditions, but for the increasing condition, the
secondary category increased the probability that the most likely
feature from the target category was the “correct” answer. In the

neutral condition, looking outside the target category did not
change the probability of the predicted feature. Thus, if subjects
were integrating information across categories, those in the in-
creasing condition should provide higher probabilities than those
in the neutral condition. However, in a variety of experiments,
Murphy and Ross failed to find any difference in the probability
ratings in the neutral and increasing conditions (see also Verde et
al., 2005). This suggested that subjects based their inductions on a
single category.

This is not to say that people never integrate information across
categories when making inductions. Murphy and Ross (2010) and
Murphy, Chen, and Ross (2012) characterized individual subjects
according to whether they focused on a single category or inte-
grated across categories in their inductions. Their results suggest
that a minority of people integrated across categories consistently
(about 25%, depending on conditions), with the large majority
using a single category most or all of the time. Additionally,
certain category structures and question formats promote integrat-
ing predictions across categories (Murphy et al., 2012; Murphy &
Ross, 2010). Given the variations in normative responding, the
more important research question may be understanding when
people do and do not integrate information across possibilities. The
present research considers the effects of fundamental differences
in the task that might lead to more or less Bayesian responding.

We should clarify that general normative principles suggest that
people should attend to category certainty when making category-
based inferences and that they should combine information from
different possible categories in some way. One does not need a
Bayesian model in order to derive this prediction, and our own
tests of the prediction have been relatively generic—for example,
measuring whether there is any effect of a secondary category,
rather than the specific effect predicted by Equation 1. Nonethe-
less, as we explain in the next section, Bayesian models have
dominated the analysis of this issue as well as closely related
research in perception and motor control. This makes them of
particular interest in our investigation.

Bayesian Responding

The finding that many people do not integrate across possible
categories during induction is surprising, given that studies of
seemingly more complex problems of perception and motor con-
trol often find that people do integrate information across possi-
bilities in a Bayesian manner (Kersten, Mamassian, & Yuille,
2004; Tassinari, Hudson, & Landy, 2006; Trommershäuser,
Landy, & Maloney, 2006). In studies of perception, Bayesian
models are used to explain how the visual system takes ambiguous
inputs and returns the most likely percept. People use knowledge
about prior probabilities of states of the world and the likelihood of
each state, given the visual stimulus, to arrive at the most probable
interpretation of the stimulus (Kersten et al., 2004). In motor
control, one action may be best suited to achieve a goal, given the
state of the world. But because perception is not perfect, the state
of the world is uncertain. Models of action propose that people
integrate information about the likelihood of the possible states of
the world to make near-optimal actions (Haruno, Wolpert, &
Kawato, 2001). These actions are sensitive to the payoff structure
of a task: Subjects make motor decisions that minimize costs,
given the uncertainty of different motor outcomes and the costs
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and benefits associated with each outcome (Trommershäuser et al.,
2006; Trommershäuser, Maloney, & Landy, 2008). Trommer-
shäuser, Körding, and Landy (2011) summarized many examples
of such integration of options in the perceptual domain.

It is surprising that people are able to integrate across possibil-
ities and weigh costs and benefits in complex perception-action
tasks but seem unable or unwilling to combine information about
two categories in inductive reasoning—a task that seems compu-
tationally simpler. To explain this discrepancy, we appeal to the
distinction between implicit and explicit reasoning (Sloman, 1996,
but see discussion below). Explicit processes tend to be conscious,
relatively slow, effortful, and rule-based, whereas implicit pro-
cesses tend to be unconscious, fast, easy, and associative. Our
suggestion is that category-based induction, as studied in the past
literature, is an explicit reasoning task in which people overtly
consider different options and use heuristics to derive answers. In
contrast, perception-action experiments tend to study fast re-
sponses that depend on learned associations in which the different
options may not be overtly considered. Thus, how people respond
may determine the reasoning used for a task (or, perhaps, whether
reasoning is used). Our proposal is that the distinction between
implicit and explicit induction is tied to the response mode: Verbal,
unspeeded responses such as those used in category-based induc-
tion tasks tap into the explicit reasoning processes, whereas fast
motor responses such as those used in action and perception tasks
are made implicitly.

The differences between the explicit induction task and the
motor-perception tasks at first glance seem closely related to the
implicit/explicit distinction drawn by Sloman (1996) and the Sys-
tem 1 versus System 2 distinction prevalent in the reasoning and
decision-making literatures (e.g., Evans, 2007, 2008; Kahneman,
2011; Stanovich, 2010). However, it is not clear that that distinc-
tion captures our particular comparison. Sloman (1996, p. 5)
appears to have excluded perceptual tasks from his two systems, as
not involving reasoning. Examples of System 1 reasoning include
processes that are clearly higher level cognition, such as the
availability heuristic and anchoring. Perceptual judgments and
motor tasks such as pointing seem more automatic and less cog-
nitively penetrable than such heuristics. Therefore, we use the
terms implicit and explicit as descriptive terms rather than imply-
ing that these processes fit within the theoretical scheme of dual-
system theories of reasoning. Part of our investigation is to find out
in more detail what aspects of these different tasks might be
responsible for their different results.

Why should explicit processing lead to non-Bayesian respond-
ing in induction while seemingly less sophisticated processing
leads to more normative use of information in perceptual predic-
tions? Explicit reasoning is subject to a limitation, called the
singularity principle, that people generally consider only one hy-
pothetical possibility at a time (Evans, 2007; related to Stanov-
ich’s, 2009, claim that people are cognitive misers). This does not
mean that people cannot consider more than one category but that
they are biased not to, which leads to different computations than
does the implicit system. The Bayesian solution to category-based
induction involves keeping various possibilities in memory and
computing probabilities. Given this, focusing on a single category
and disregarding alternatives is attractive, especially when induc-
tion problems are complex and involve many possible categories.
In contrast, implicit processes may be controlled by summation of

associations outside working memory and thus are not subject to
the singularity principle. Perception and motor control experiments
do not ask people to explicitly consider different possibilities;
rather, the potential possibilities are only implicit in the situation.
A cup might be 10, 11, or 12 inches away, but people do not
overtly evaluate all these possibilities when deciding how much
force to exert to reach it. Instead, perceptual representations of
these distances are activated proportionally to their consistency
with the input and transmitted to the motor controllers (Haruno et
al., 2001).

Although various distinctions between explicit and implicit pro-
cesses have been researched in other forms of reasoning and
decision making (Evans & Frankish, 2009; Kahneman, 2011;
Kahneman & Frederick, 2002, 2005; Stanovich, 2010) as well as
in some key phenomena in category-based induction (Heit &
Rotello, 2010; Feeney, 2007; Rotello & Heit, 2009), such distinc-
tions have not been systematically applied to category-based in-
duction when categorization is uncertain. This suggests that delib-
erate, strategic approaches to induction may lead to fewer
“correct” answers than do quick, gut reactions (for similar ideas,
see Gigerenzer, 2007; Gigerenzer & Todd, 1999)—at least, when
multiple categories are involved. This is an important distinction
because, although deliberative predictions are common, inferences
sometimes require immediate action, without time to explicitly
consider (or exclude) possible categories. Thus, many real-life,
category-based inductions are likely made implicitly. In the Gen-
eral Discussion, we consider whether this difference corresponds
to two distinct systems of reasoning or is due to only one or two
variables (e.g., speed of responding).

There is some evidence that people use categories differently
when making implicit and explicit predictions. Shafto, Coley, and
Baldwin (2007) taught subjects novel properties about biological
categories and found that time pressure weakened inferences to
ecologically related categories (e.g., when asking about whether an
animal is likely to have the same disease as another animal living
in the same environment). Time pressure had no effect when
subjects were asked to make the same inferences to a taxonomi-
cally related category. As taxonomic categories are usually more
readily accessible than ecological ones (Ross & Murphy, 1999),
time pressure may restrict analytic processes that select and reason
about which categories are appropriate for induction.

There is also evidence from research on induction when cate-
gorization is uncertain that time pressure may restrict more stra-
tegic category use. Verde et al. (2005) had subjects learn catego-
ries of children’s drawings like those used in Murphy and Ross
(1994). Subjects made predictions in the form of a speeded-
verification task or an untimed written response. In the speeded-
verification task, subjects were shown one feature (e.g., shape) and
they then made a speeded induction as to whether the feature
presented after it (e.g., color) was most likely. Verde et al. (2005)
found evidence that subjects integrated information across catego-
ries when making speeded predictions of this sort—they were
faster to respond in the increasing condition than in the baseline
condition. Subjects who made their predictions verbally without
time pressure, as in Murphy and Ross (1994), did not appear to
integrate information (i.e., there was no difference between the
likelihood ratings for increasing and baseline conditions). Thus,
subjects responding verbally have disregarded information from
less likely categories to simplify the induction.
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The results of Verde et al. (2005) suggest that quicker respond-
ing may lead to different use of categories (though see Newell,
Paton, Hayes, & Griffiths, 2010, for a dissenting view). However,
the dependent measures of their two tasks were very different and
not directly comparable: One was a speeded true-false judgment,
and the other was a prediction and probability rating. The present
study provides a much stronger test of this account, in which the
explicit and implicit tasks are both predictions. We then go further
in testing just why these two response modes might lead to
different patterns of induction.

These inferences are a key part of our reasoning and often form
the basis of decision making. Thus errors in category-based infer-
ences can lead to poor decisions. For example, in the area of
medical decision making, if a doctor is unsure of whether a patient
has disease A or B, he or she must make a prediction about what
treatment will be effective. Focus on a single category could result
in poor treatment choices. In fact, this very phenomenon, called
diagnosis momentum (when an uncertain diagnosis is treated as
certain at the exclusion of other possibilities), has been cited as a
flaw in medical decision making (Croskerry, 2003).

The distinction between explicit and implicit processing
could also help to explain the different conclusions from our
past work (summarized above) and that of another line of
research (particularly by Tenenbaum and his colleagues), which
has made a case for the utility of Bayesian models in catego-
rization and inference (Griffiths & Tenenbaum, 2006; Heit,
1998; Tenenbaum, 1999, 2000). For example, Tenenbaum
(1999) presented subjects with a set of values that represented
hormone levels of healthy people. They then predicted whether
a new value was from the same distribution (i.e., is the new
value also healthy?). Tenenbaum’s model analyzed this prob-
lem as a collection of hypotheses (categories) about the healthy
range. They found that people’s predictions were fit well by a
Bayesian rule that considered each hypothesis, weighted by its
likelihood. According to this analysis, subjects are apparently
integrating information across multiple categories when making
inferences, in contrast to work in our lab with scenarios or
visually presented categories.

This normative use of categories may be the result of less
explicit thought about categories. The categories in Tenen-
baum’s (1999) experiment were number ranges that were never
presented to the subjects. It seems unlikely that subjects were
explicitly considering each possible range—that is, thinking “Is
the range 45–55, or is it 47–57, or is it 47– 48?” (indeed, there
are an infinite number of possible ranges, so they could not all
be explicitly considered). In contrast, in experiments in our labs
we have always used a small number of categories, which are
named or physically presented. It seems likely that subjects
explicitly evaluated each of these categories. Thus, the seeming
difference in results from the two paradigms could well be due
to a difference between explicit and implicit processing, which
in turn raises the question of what implicit induction involves.
Perhaps, it is not only response mode that leads to implicit
processing—the way categories are learned and presented (i.e.,
whether they are explicitly mentioned) may also lead to implicit
processing and normative use of category information. We
consider whether implicit induction is determined predomi-
nantly by the response mode or also by the way that the
categories are learned.

The Present Research

In the present experiments, subjects learned artificial categories
of moving geometric figures defined by two features: shape and
direction. At test, subjects were presented with a shape and asked
to predict its direction either implicitly (Experiment 1) or explicitly
(Experiment 2). For the implicit test, we created a novel, game-like
motor task that elicited a speeded prediction analogous to those
used in perception-action studies (Haruno et al., 2001; Trommer-
shäuser et al., 2006). The explicit test was a formally identical
verbal task that tested induction by eliciting a verbal, unspeeded
prediction. In Experiment 3, we repeated Experiments 1 and 2 with
a within-subjects design to examine whether the same category
knowledge can lead to different inductions depending on the mode
of prediction. In Experiment 4, we examined the effects of reduc-
ing deliberate thought about categories by making learning of
categories, rather than the induction itself, implicit.

In sum, these experiments investigate whether the distinction
between implicit and explicit processes helps explain when people
do and do not use category information in a normative way when
making inductions under uncertainty. Our hypothesis is that people
will be more likely to use categories normatively when making
inductions implicitly, as opposed to explicitly. If this is the case,
these results will help explain the apparent discrepancy between
perception-action studies, which suggest that people integrate in-
formation across various possibilities, and reasoning studies,
which suggest that they do not. In these experiments, we also aim
to shed light on possible errors in reasoning that affect both
everyday and major life decisions and to explain when people are
more or less likely to effectively use the information available to
them.

Experiment 1

In order to test the hypothesis that people normatively integrate
information across categories when making predictions implicitly,
we created a novel motor task that elicited a speeded prediction. In
Experiment 1, subjects learned artificial categories that consisted
of eight moving geometric figures that each had two features,
shape and direction of movement. After learning, subjects per-
formed a game-like task in which they caught the moving shapes
with their cursor (see online supplemental materials for video of
task). They were never explicitly asked to make a prediction, only
to catch the objects, and their cursor placement right before the
shape moved was used as a proxy for their prediction of direction.
Through pretesting, we determined speeds at which it was bene-
ficial for subjects to use category knowledge to catch shapes by
placing the cursor along or near the trajectory associated with the
categories. If speeds were too slow, subjects could have caught the
shapes without having to predict where they would go.

The categories for Experiment 1 each consisted of eight moving
geometric figures. There were two critical shapes of interest:
squares and hearts. Each of these shapes belonged to two catego-
ries, the target category and secondary category. In Condition 1,
there was a 66% chance that a square belonged to Category 1 (the
target category) and a 33% chance that it belonged to Category 2
(the secondary category). That is, there were eight squares in
Category 1 and four in Category 2. In the target category, the
critical shape was equally associated with two directions. In the
secondary category, the critical shape moved in only one direction,
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which was the same as one of the directions from the target
category. For example, in Condition 1 half of the squares in
Category 1 moved in the 1 o’clock direction, and the other half
moved in the 5 o’clock direction. In Category 2, all shapes (in-
cluding the four squares) moved in the 1 o’clock direction. For
hearts, the target category was Category 4. In Category 4, half of
the hearts moved in the 11 o’clock direction and half moved in the
7 o’clock direction. The secondary category was Category 3; all its
shapes moved in the 7 o’clock direction (see Table 1 for category
structure).

Condition 2 served to counterbalance critical directions of the
secondary categories. The target categories were exactly the same
as in Condition 1, but the secondary categories differed: All
the shapes in Category 2 moved in the 5 o’clock direction, and all
the shapes in Category 3 moved in the 11 o’clock direction. As a
result, if subjects attended to the secondary category, there should
be a difference between the predictions made in the two condi-
tions. If they relied only on the target category, there should be no
difference between conditions. The question, then, is whether
people will shift their predictions depending on what condition
they are in (i.e., depending on the less likely category). Such an
effect would indicate that people integrate predictions across cat-
egories, as in the normative rule of Equation 1.

For the moment, assume that people’s predictions (implicit or
explicit) tend to be the average observed direction of the moving
objects. Because half of Category 1 shapes go to 1 o’clock and half
to 5 o’clock, the average prediction for squares based on the target
category only would be at 3 o’clock. Similarly, for hearts, the
average target prediction would be 9 o’clock. We set these average
predictions as 0° and then scored subjects’ predictions relative to
this zero point. However, people may not have predicted the
average of the observed directions but may have instead done
something more like probability matching: distributing half their
predictions of squares to 1 o’clock and half to 5 o’clock. The mean
of such predictions would also be 3 o’clock—our zero point.
Therefore, our dependent measure was the predicted direction
relative to this zero. (We discuss these two response strategies in
the Results.)

Integration of information across categories would be evidenced
by a shift away from the direction predicted by attending to only
the target category (3 o’clock for squares and 9 o’clock for hearts)
toward the direction shared by the secondary category. In Condi-
tion 1, attending to the secondary category for squares would mean

shifting toward 1 o’clock, and attending to the secondary category
for hearts would mean shifting toward 7 o’clock. As Condition 2
serves to counterbalance the directions of the secondary categories,
attending to multiple categories in this condition would mean
shifting toward the shape’s other possible direction (shifting to 5
o’clock for squares and 11 o’clock for hearts).

If implicit prediction does lead to integration of information
across categories, we would also expect subjects under time pres-
sure to show greater integration of information, because they
would have less time to explicitly consider all the categories and
perform calculations. Rather, their response would be pulled to-
ward the secondary category by the association of the shape to
the location. To test this hypothesis, we split subjects into two
groups, fast and slow. Subjects in the fast group were exposed
to the shape for less time than were those in the slow group
prior to having to catch it. Thus, subjects in the fast group had
less time to employ explicit reasoning strategies and so should
show greater integration than the slow group, under the assump-
tion that time pressure encourages implicit processing (Sloman,
1996; Verde et al., 2005).

Method

Subjects. Subjects in all experiments were New York Univer-
sity undergraduates who received course credit for participating.
Forty-eight subjects were randomly assigned to conditions in Ex-
periment 1; data were dropped for six subjects who did not follow
instructions about cursor placement during the test.

Materials and design. The 2 � 2 design included two
between-subject factors: speed of shape movement (fast, slow) and
counterbalance of directions (Conditions 1, 2).

Subjects learned four categories of moving shapes. Each cate-
gory included eight black shapes approximately 1.75 cm to 2.5 cm
in length. The category structures (described above) are listed in
Table 1. All shapes of the same type were identical (i.e., all squares
were identical, all rectangles were identical, etc.). All stimuli were
presented on the background of a light gray circle 27 cm in
diameter centered on a black computer screen. The stimuli started
in the center of the computer screen and then moved off the screen
in a straight line, disappearing once they moved beyond the border
of the circle. The movement of each shape had a slight random
component so that there was variation in each exemplar’s direc-

Table 1
Category Structure, Experiment 1

Exemplar

Category 1 Category 2 Category 3 Category 4

Shape Direction Shape Directiona Shape Directiona Shape Direction

1 Square 1 Square 1/5 Heart 7/11 Heart 7
2 Square 1 Square 1/5 Heart 7/11 Heart 7
3 Square 1 Square 1/5 Heart 7/11 Heart 7
4 Square 1 Square 1/5 Heart 7/11 Heart 7
5 Square 5 Rectangle 1/5 Diamond 7/11 Heart 11
6 Square 5 Rectangle 1/5 Diamond 7/11 Heart 11
7 Square 5 Rectangle 1/5 Diamond 7/11 Heart 11
8 Square 5 Rectangle 1/5 Diamond 7/11 Heart 11

Note. The direction entries are clock directions (1 � 1 o’clock, etc.).
a The first number refers to the direction in Condition 1; the second number refers to that in Condition 2.
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tion. The precise direction was randomly chosen within a �2.5°
window.

Procedure. The experiment consisted of three phases: obser-
vation, learning, and test. A PC presented the instructions and
controlled all three phases.

Subjects were told that they would view four categories of
moving shapes and were to learn what combination of shapes
and directions belonged to each category for a memory test.
During the observation phase, all eight shapes from each cate-
gory were presented singly. Each shape appeared in the center
of the screen for 1 s, then moved off the screen in 1.25 s. The
name of the shape’s category appeared in the center of the
screen for the entire time the shape was on the screen. All
exemplars from Category 1 were presented, then all exemplars
from Category 2, and so on.

Subjects were next told that they would see the same shapes that
had been presented in the observation phase. They were to classify
each shape into one of the four categories by pressing the number
corresponding to the correct category on the keyboard. At the
beginning of each trial, a white fixation cross appeared in the
center of the screen for 1 s. The shape then appeared in the center
of the screen for 1 s and then moved off the screen in 1 s. There
was no time limit on responding. After answering, the correct
answer appeared for 1.25 s. When a shape was incorrectly classi-
fied, subjects viewed a repeat display (without responding) of the
moving shape with the correct category displayed. There were four
learning blocks in which each of the 32 items was tested in random
order. Because of the uncertainty of the critical items’ category
(e.g., a square could be in Category 1 or 2), subjects could get no
more than 75% correct, assuming they chose the most likely
category for all presented stimuli. In all experiments, subjects had
to reach at least 50% correct during the final block of learning to
be included in analysis.

The final phase of the experiment consisted of a 64-trial test
in which subjects attempted to catch each shape with their
cursor (touch the shape with the cursor before it disappeared
from the screen). The cursor appeared as a circle 0.8 cm in
diameter (see Figure 1 and online supplemental materials).
Subjects were told that they would see the same shapes that they
had seen in the previous two phases and that they should use

what they had learned about the categories to catch each shape.
They were instructed that it was not possible to catch the shape
in the center of the screen, so they must place their cursor at the
edge of the screen where they thought it would be easiest to
catch the shape. Subjects controlled cursor placement and
movement with the mouse. At the beginning of each trial, a
shape appeared in the center of the screen with the cursor
directly on top of it for 0.8 s (fast group) or 2 s (slow group).
To prevent subjects from attempting to catch the shape in the
center of the screen, effectively not making a prediction about
the shape’s direction, the shapes momentarily disappeared from
the screen after the initial presentation interval and reappeared
approximately 5 cm from the center in the direction of move-
ment. For both groups, the shapes moved off the screen in 0.45
s. Subjects were able to move the cursor with their mouse
during both the initial presentation of the shape in the center of
the screen and while the shape was moving. Subjects saw a 1-s
or 2-s feedback message (“Good catch” or “No catch”). Feed-
back was longer in the fast condition, because the pace of trials
was too fast when feedback was only 1 s.

Results

Subjects were on average 71.1% correct (chance � 25%)
during their last training block, near the 75% maximum, sug-
gesting that they learned the categories quite well. Subjects in
the fast group caught 51.4% of trials included in the analysis of
cursor position (see below for more explanation of excluded
trials), and subjects in the slow group caught 54.6% of these
trials. It is difficult to know how to interpret the catching
behavior since it involves not just having the cursor in the
approximate area (induction) but also some motor variables of
no particular interest here. However, it is worth noting that
subjects in the fast group did about as well as subjects in the
slow group even though they performed a more difficult task
(having less time to react to the shape before it disappeared).

Only responses to the two critical shapes (squares and hearts)
were included in the main analysis of the test phase. The
dependent measure was the placement of the cursor prior to
the movement of the shape. As subjects were unable to catch the
shape in the center of the screen, any trials where the cursor was
within 2.5 cm of the center of the screen were omitted. After
these data were omitted, six subjects had responses for fewer
than five trials for at least one of the critical shapes. These
subjects were dropped from analysis.

Responses were coded such that a position exactly in between
the two possible directions of the shape was 0°, and a shift from
that point toward the direction reinforced by the secondary
category was a positive shift. For example, for the squares in
Condition 1 (which might move to 1 o’clock or 5 o’clock), the
3 o’clock position was 0°, a cursor placement at 1 o’clock
(which was the direction of the secondary category) was 60°,
and a cursor placement at 5 o’clock was �60°. We obtained the
mean cursor placement for each subject by averaging the mean
cursor placements for squares and hearts. Thus, use of a single
category is evidenced by an average prediction of 0°. Norma-
tive use of categories is evidenced by a positive average pre-

Figure 1. Illustration of the implicit task. The shape appears in the center
of the screen with the cursor (the circle) on top of it for either 0.8 s (fast
group) or 2 s (slow group), during which the subject cannot catch the shape
(A). The shape then momentarily disappears and reappears 5 cm from the
center in the direction of its movement and disappears from the screen once
it reaches the edge of the gray circle (B). Subjects must touch the cursor to
the shape before it disappears. See online supplemental materials for more
detail.
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diction, as this represents a shift from 0° in the direction of the
secondary category.2

Trials in which the cursor was placed at a position greater than
100° or less than �100° were not included in the analysis, because
the cursor was on the opposite side of the screen from where the
shape traveled, indicating that the subject either forgot where the
shapes went or did not see the shape correctly prior to its move-
ment. (There were 15 subjects with at least one excluded trial. On
average, each of these 15 subjects had approximately three ex-
cluded trials. Results were similar when such responses were
included.)

Cursor placement analysis. As explained above, integration
of information across categories is evidenced by a shift from 0° in
the direction of the secondary category, which we coded as posi-
tive. This is indeed what we found. The average cursor placement
(M � 11.6°) was significantly greater than 0°, t(41) � 4.07, p �
.01, d � 0.63, indicating that people’s predictions about the
object’s motion were integrated across the two categories.

A 2 � 2 (Speed � Condition) analysis of variance (ANOVA)
was performed. The main effect of condition and the Speed �
Condition interaction were not significant, so Conditions 1 and 2
are collapsed in the following analyses. The main effect of speed
was marginally significant, F(1, 38) � 3.45, p � .07. The fast
group’s mean cursor placement (M � 16.8°, SD � 18.4) was
significantly different from 0°, t(20) � 3.72, p � .01, d � 0.81.
The slow group’s mean cursor placement (M � 6.4°, SD � 14.6)
also indicated integration across categories, but the difference from
0° was marginal, t(20) � 2.00, p � .06, d � 0.45. Thus, consistent
with our hypothesis, there is a suggestion that the fast group was
“more implicit” and showed greater integration of the categories in
induction (see Appendix A for details on responses to individual
trials).

Performance over time. We asked whether subjects’ norma-
tive performance might be a result of learning during test by
comparing the mean cursor placement from the first block to the
second block of test trials. The effect of block was not significant,
F(1, 40) � 0.01, p � .05, suggesting that the amount of shift
toward the secondary category did not change over the duration of
the test phase. There was no evidence of a difference between the
fast and slow groups in this analysis.

Noncritical shape analysis. The design included two shapes,
rectangles and diamonds, that were not subject to the experimental
manipulations and that did not enter into any of our hypotheses.
Nonetheless, we examined their results to ensure that subjects
learned about them, showing attention to all the categories. In fact,
performance on these items was extremely high—higher than on
the test shapes, because they had no category ambiguity. Cursor
placement was quite close to the actual location of the shape for
both the fast and the slow groups (Ms � 47.5° and 50.4°, SDs �
11.7 and 12.9, respectively; the true direction of motion was 60°).
In fact, 88% of all cursor placements for these shapes were within
20° of the correct location. Thus, when subjects were certain of a
shape’s direction, they moved their cursor close to that location the
vast majority of the time.

Individual patterns. Our finding that people shifted toward
the secondary category’s direction when making implicit predic-
tions might be explained by two different response strategies. First,
subjects’ predictions could have been like a weighted mean. Cur-
sor placement would have been between the two possible locations

toward which the target shape might move but closer to the
secondary category’s direction. For example, subjects in Condition
1 may have consistently placed their cursor between 1 and 5
o’clock when catching squares but closer to the secondary cate-
gory’s direction of 1 o’clock. Another strategy would be proba-
bility matching. If subjects knew that the square could go to either
1 o’clock or 5 o’clock, they could have alternated between placing
their cursor at one or the other of these two locations. When the
square was more likely to go to 1 o’clock because of the secondary
category, they could have placed their cursor at the 1 o’clock
location more frequently than the 5 o’clock location. Both strate-
gies would reflect multiple category use.

To investigate which strategy our subjects used, we calculated a
center-weighting score: the number of each subject’s responses
within plus or minus 20° of the subject’s mean response (suggest-
ing a weighted mean strategy) divided by the number of total trials.
Thus, the center-weighting scores ranged from 0 (all probability
matching responses) to 1 (all weighted mean responses). We
classified subjects with scores below .5 as probability matchers
and subjects with scores above .5 as weighted mean responders.
For the slow condition, 17 subjects were probability matchers and
four subjects were weighted mean responders. For the fast condi-
tion, 12 were probability matchers and nine were weighted mean
responders. The mean center-weighting score for the fast group
was marginally greater than the mean score for the slow group,
t(40) � 1.88, p � .07 (Ms � .45 and .29). Thus, as the presentation
of the shapes (prior to movement) became shorter, subjects tended
to go to the same, intermediate spot for a given shape. Perhaps the
probability-matching strategy reflects more thought or a more
deliberate decision about the direction in which the shape would
move. The intermediate position is perhaps the sum of the different
associations to the shape, as in motor control models like that in
Haruno et al. (2001).

Discussion

The results of Experiment 1 suggest that people integrate infor-
mation across categories when making predictions in a speeded
motor task and that they showed greater integration when under
increased time pressure. Taken together, the results provide evi-
dence that people use multiple categories in a normative manner
when making predictions implicitly. During the test, categories
were not tested or even mentioned—the task was to catch the
quickly moving figure. Therefore, this measure of induction is
very different from the more usual task in which categories are
queried, and subjects have considerable time to choose one to
focus on. Across domains, people make category-based inductions
under different time pressures, which may lead to differential use
of information. As with our class cutter who sees an unknown
person in the parking lot, there may not be enough time to consider
all the possible categories (e.g., student, teacher, bus driver) and

2 Note that although the responses for Condition 1 and Condition 2 are
coded such that the direction of the secondary category is the same number
(60°), these numbers actually represent different responses. For example,
for squares in Condition 1, a shift of 30° corresponds to a cursor placement
at 2 o’clock. In contrast, for squares in Condition 2, a shift of 30°
corresponds to a cursor placement of 4 o’clock. As the only difference
between the two conditions is the direction of the secondary categories, this
shift suggests that the secondary category influenced predictions.
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exclude less likely ones. Because our class cutter must react
quickly to avoid punishment, his response may take into account
multiple categories. However, if he had more time to think about
the unknown person, he might focus on the most likely possibility
and continue on his mission to cut class (as there are far more
students than teachers).

A key question is what exactly makes an induction task implicit.
As previously discussed, experiments on perception and motor
control also show that people can integrate information from
multiple possibilities. These experiments also tend to use tasks that
have an action response, similar to the catching task in Experiment
1. Thus, action selection may be closely associated with implicit
processing. We address this question further in Experiment 4.

Experiment 2

The results of Experiment 1 support our hypothesis that people
integrate information across categories when making implicit pre-
dictions; however, the task we used was different in various
respects from the explicit tasks used in our previous work on
category-based induction, which consistently found that most peo-
ple do not use categories normatively. Our purpose in Experiment
2 was to verify that the form of the prediction rather than the
category structure, stimuli, or learning procedure accounts for the
normative use of categories.

Experiment 2 was identical to Experiment 1 except for the final
phase in which subjects made predictions. Instead of catching
shapes, subjects viewed static shapes and were asked to verbally
state the direction they thought the shape was most likely to travel
in. A weakness of Verde et al. (2005) was that the implicit task and
the explicit task were quite different. The implicit task involved
verification (yes-no judgment) of a presented feature, whereas the
explicit task involved producing a feature (the prediction) and a
probability rating. In the present experiment, the demands of the
tasks corresponded more closely. As we have hypothesized that
action may have something to do with what makes a prediction
implicit, we wanted to avoid having subjects move a cursor to the
direction of their prediction but still allow them to make predic-
tions on the continuous, 360° scale used in Experiment 1. Thus,
subjects made verbal predictions using a familiar measure—clock
directions. They were asked to imagine the shape’s trajectory as
the hour hand of a clock and report the time that corresponded to
that hour hand (e.g., 5:15 would indicate a position one quarter of
the angle between 5 and 6 o’clock).

As in Experiment 1, shifts toward the secondary category were
coded as positive values. If subjects were basing their inferences
on multiple categories, the mean prediction would be significantly
different than 0°. However, we expected to find no such difference,
based on previous findings that subjects tend to use categories
nonnormatively and focus on a single category when making
predictions verbally (Murphy & Ross, 1994; Ross & Murphy,
1996; Verde et al., 2005).

Method

The materials and design were identical to those in Experiment
1. Twenty subjects were randomly assigned to the two counter-
balancing conditions. One subject was omitted for failure to cat-
egorize any shapes into their target category during the test phase.

The procedures of the observation and learning phases were
identical to those in Experiment 1. The test phase of the experi-
ment consisted of a 16-trial test in which subjects were presented
with a static shape and asked four questions about it. These are the
questions used in most past experiments with this paradigm (Hayes
& Newell, 2009; Murphy & Ross, 1994, 2005; Verde et al., 2005),
modified to predict direction. Each question was presented on a
separate screen. The shape was presented in the middle of the
screen directly below the question text:

Q1: What category do you think the shape most likely belongs to?

Q2: What is the probability that this shape belongs to the category you
just identified (0–100)?

Q3: What direction do you think the shape is most likely to travel in?
Please input your answer as a time. Please enter the HOUR VALUE
(1–12) and PRESS ENTER.

Q4: Now please think about the MINUTE value that corresponds to
the direction you expect the shape to travel in. Please enter the
MINUTE VALUE (0–59) and PRESS ENTER.

For Q1 and Q2, each screen was identical to that used in the
observation and learning phases. Q1 ensures that subjects thought
that the target category was most likely. If subjects thought that the
secondary category was most likely, a prediction in the direction
reinforced by the secondary category could be a result of single-
category reasoning. Q2 allows us to be sure that subjects under-
stood that the item’s categorization was uncertain. For Q3 and Q4,
the numbers from 1 to 12 were presented around the gray circle so
that it resembled a clock face. There was no time limit to answer
any question. Unlike in the implicit task, then, in the explicit task,
there was no moving object, no motor component, and no time
pressure. Additionally, predictions were made verbally rather than
spatially. There were four blocks in which all four shapes were
tested once in random order.

To ensure that people were able to accurately report the shape’s
trajectory as a time, prior to the test phase subjects completed two
practice trials of reporting indicated directions in hour and minute
values. All subjects gave an answer within 5 minutes of the correct
value on their second practice trial.

Results

Learning performance was again near the maximum: 69% in
the last block of learning (chance � 25%). Analysis of re-
sponses to the critical shapes is discussed first. Q1 and Q2 were
used to verify that subjects obtained similar knowledge about
the distribution of the critical shapes in the categories. The
likelihood of categorizing the shape into the target category
(Q1) was 61.8%. The average probability rating that the shape
belonged in the target category (Q2) was 55.7%. Subjects
categorized the shape into its secondary category 36.2% of the
time, and the average probability that the shape belonged in this
category was 45.7%. Subjects rarely categorized the critical
shapes into categories to which they did not belong (Categories
3 and 4 for squares and Categories 1 and 2 for hearts). Only one
subject made such categorizations. These results show that
subjects knew which categories squares and hearts were most
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likely to belong to and that their categorization of these shapes
into their target category was not certain.

As in the analysis of Experiment 1, the responses from Q3 and
Q4 were coded such that the time corresponding to the point
exactly in between the two possible directions of the shape was 0°
(3 o’clock for squares and 9 o’clock for hearts; a shift toward the
direction reinforced by the secondary category was positive). To
find the mean prediction (the amount of shift from 0° toward the
secondary category) for each subject, we calculated the mean
prediction for each shape and took the average of the two. Anal-
yses of explicit prediction data were done twice: once with data
including all categorizations (all categorizations analysis) and once
with data including only trials in which subjects categorized the
critical shapes in their target category (target categorization anal-
ysis).

All categorization analysis. The mean prediction (M �
�4.6°, SD � 19.1) was not significantly different than the average
observed direction for the shapes in their target category only (0°),
t(18) � 1.0, p � .05, d � 0.24. Although the mean prediction is
near the center of the two possible directions, this does not mean
subjects tended to choose values near 0°. In fact, only one response
was within 20° of 0° (see Appendix B).

Target categorization analysis. The above analysis in-
cluded all categorizations of the critical shapes. This is analo-
gous to the analysis of cursor position in Experiment 1, since in
the catching task it was impossible to know what category
subjects thought was most likely. Past experiments of this sort,
however, have only looked at trials where items are categorized
in the most likely category, to ensure that any difference be-
tween conditions is a result of integration of information across
categories. For example, if subjects in our experiment thought
that the object was in the secondary category, a prediction in the
direction reinforced by the secondary category could be a result
of single-category reasoning. We performed an additional anal-
ysis that included only trials in which subjects picked the target
category as in all past studies of explicit judgments. The results
revealed that the mean prediction (M � �32.5°, SD � 24.6)
was significantly different from 0°, t(18) � 5.8, p � .01, d �
1.32. The negative mean reveals that this effect is in the
opposite direction from that of Experiment 1 and that subjects
shifted away from the direction reinforced by the secondary
category rather than integrating the predictions across the two
categories as in Equation 1. In other words, subjects seem to be
avoiding the features in the secondary category when making
their predictions.

Noncritical shape analysis. As in Experiment 1, we exam-
ined the results for the shapes that had no category ambiguity
(rectangles and diamonds) to ensure that subjects learned and paid
attention to the categories. As expected, performance on these
items was extremely high. The likelihood of categorizing the shape
into the correct category (Q1) was 98.7%. The mean probability
rating that the shape belonged in the target category (Q2) was
92.0%. Thus, subjects both knew the category to which these
shapes belonged and were confident in their categorizations. The
mean prediction for the noncritical shapes was 35.3° (SD � 27.5;
correct value was 60°). It was clear that subjects learned these
shapes’ categories and directions.3

Discussion

The main finding is that the results from the explicit test in this
experiment were very different from the implicit test results in
Experiment 1. The implicit test results showed normative integra-
tion across categories similar to results from motor prediction
tasks, whereas the explicit test results did not. The specifics of the
explicit results were somewhat different depending on whether we
included all predictions or, as in past research with explicit judg-
ments, analyzed only the trials on which people said that the target
category was most likely. The analysis of all trials found no effect
of the secondary category, but the analysis of “correct” trials (we
use this term without prejudice) found a surprising effect opposite
to the expected one.

Bayesian analyses of category-based induction propose that
people integrate information about prior likelihoods across cate-
gories—that is, the predictions sum across categories. In the past
literature, when people showed effects of secondary categories,
those effects have always been in the direction predicted by a
Bayesian account (e.g., Hayes & Chen, 2008; Hayes & Newell,
2009; Murphy & Ross, 2010; Ross & Murphy, 1996)—shifting the
predictions in the direction indicated by the secondary category.

Analysis of trials in which subjects categorized shapes into the
target categories, however, showed the opposite pattern: Rather
than summing across categories, responses were shifted away
from the direction of the secondary category. Features shared
between the target and secondary category were predicted less
frequently than features only in the target category, rather than
more frequently as a Bayesian model would predict. This result
does suggest that subjects’ predictions are influenced by the sec-
ondary categories, because the target categories were identical in
Condition 1 and Condition 2. However, it appears subjects were
not integrating information across categories but instead avoided
predicting features associated with the secondary category. We
refer to this as the avoidance effect.

This result is a bit confusing, because it suggests that people are
influenced by the secondary category when past results with arti-
ficial categories have suggested that they focus on a single cate-
gory. However, a consideration of the entire pattern of results in
this condition shows that this difference is not as great as it might
appear. It appears that people switched between focusing on the
target category and focusing on the secondary category depending
on their initial categorization. When subjects chose the secondary
category, they chose the only direction associated with it (the
direction that all its shapes traveled in); when they chose the target
category, they chose the direction that is distinctive to that cate-
gory—the one not shared with the secondary category, even
though only half the shapes go in that direction. When these trials
are averaged together, the results are near 0°—the point in between
the two possible directions. However, individuals are not actually
averaging the two directions; they tend to pick one or the other (see
Appendix B for details on responses for individual trials).

3 In the explicit tests in the rest of the experiments, the classification
accuracy of the noncritical shapes was also around 90% or above, and the
predictions were also in the correct directions, roughly as above. Because
these results do not bear on the hypotheses being tested, we do not provide
detailed data on these items for the later experiments.
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To explain, imagine that a subject has learned that squares in
Category 1 go to 1 o’clock and 5 o’clock and that squares in
Category 2 go to 1 o’clock. Apparently, many subjects encode this
as “when in Category 1 the shape tends to go to 5 o’clock, and
when in Category 2 it tends to go to 1.” That is, because 5 o’clock
is the distinctive direction of Category 1 o’clock, people tend to
choose it over 1 o’clock (which is actually more likely, given the
uncertainty of the categorizations) or some kind of average of the
two. This results in an “avoidance” of the 1 o’clock direction by
our measure. This pattern shows that people are overly influenced
by the category they predict that the test object is in (see also
Lagnado & Shanks, 2003; Murphy et al., 2012). Further, picking
the more distinctive direction associated with Category 1 does not
seem very reasonable, given that this direction is not the most
likely one in any category, nor overall.

For the present purposes, the most significant point is that the
results in the explicit test of Experiment 2 are in contrast to the
results from the implicit tests of Experiment 1, where predictions
were integrated across categories. In Experiment 2, it seems that
subjects did not integrate across the categories but alternated
between them, with a suboptimal response in which items in the
target category were assumed to go in only one direction. We
address this unexpected avoidance effect more fully after we have
ensured that it replicates.

One possible explanation for difference in performance between
Experiments 1 and 2 unrelated to the response mode is that
subjects in Experiment 1 received more exposure to the moving
shapes than did those in Experiment 2. Subjects in Experiment 2
never saw the shape move during test. In contrast, during the test
phase of Experiment 1, subjects saw the shapes move while
performing the catching task and could have learned from this
additional information. It seems unlikely that this difference ex-
plains the more normative performance of subjects in Experiment
1, as there was no difference in the amount of shift toward the
secondary category over the course of the test phase (see Results
section of Experiment 1).

It is also worth nothing that subjects in Experiment 2 did not
predict directions between the two observed directions. In fact,
there was only one response within 20° of 0° (see Appendix B).
This was in contrast to the implicit response results of Experiment
1, which found that many subjects did predict such directions.
Recall that more than one third of subjects in Experiment 1 used a
weighted mean strategy. Subjects who used this strategy placed
their cursor between the two possible directions but slightly closer
to the one that occurs most frequently. This difference is likely in
response to the task goals. Subjects responding explicitly were
asked where they think a shape is most likely to travel. Since, for
example, they never saw a square move in a 3 o’clock direction, it
is not surprising that they did not predict 3 o’clock but rather
predicted directions they have seen a square move in (i.e., around
1 or 5 o’clock). However, putting a cursor near 3 o’clock would be
useful for subjects responding implicitly, given that their goal is to
catch the square, similar to motor control picking a response that
is the weighted average of the possibilities (Haruno et al., 2001).
Cursor positions near the center ensure that the cursor is somewhat
close to both possible directions. Thus, it seems that induction
strategies are sensitive to task goals.

Experiment 3

In Experiments 1 and 2, people made very different inductions
depending on how they made predictions—via motor response or
verbal prediction. Different people served in the two experiments.
In real life, the same category knowledge could serve as the basis
for both explicit and implicit inductions on different occasions. For
example, imagine a hypothetical case in which something is flying
toward a person’s head at dusk. The object cannot be completely
identified but seems to have wings. What should the person do? If
the person had enough time to think about it calmly, she might
evaluate the possibility that the object is a bird or a bat or perhaps
a thrown object and then focus on the most likely possibility (as
readers might be doing now, thinking, “it’s probably not a bat”).
However, in real time, excluding some possible categories might
take more time and effort than are immediately available, and her
response might take into account multiple such categories (e.g.,
dropping to the ground rather than swatting away something that
she doesn’t want to touch). Thus, the same categories could lead to
different responses in the same person depending on the task
demands on that occasion.

This reasoning assumes that the critical variable determining the
different inductive patterns is the mode of response—untimed
considered judgment versus immediate reaction. Experiment 3
investigated this question by testing each subject on both implicit
and explicit inductions within the same test session, using the same
categories. This provides a stringent test of the hypothesis that
response mode determines how alternative categories are used, and
it also tests the flexibility of people’s predictions. It will be
interesting to discover whether people will make such “opposite”
inductions about the same categories only minutes apart.

Method

Subjects. Forty-one subjects were randomly assigned to con-
ditions and orders. Data from four subjects who did not follow
instructions about cursor placement during the testing phase were
dropped. Two subjects were dropped from analysis for not cate-
gorizing any of the critical shapes into their target category during
the explicit task. One subject was dropped for failing to learn the
categories.

Materials and design. The design included two between-
subjects factors, condition and order (explicit first vs. implicit
first), and one within-subjects factor, test mode (implicit vs. ex-
plicit). The category structure and stimulus materials were identi-
cal to those in Experiments 1 and 2.

Procedure. The experiment consisted of four phases, (a) ob-
servation, (b) learning, (c) implicit test, and (d) explicit test, with
the latter two varying in order across subjects. The procedure for
the observation and learning phases were identical to those of
Experiments 1 and 2. The test phases followed the procedures of
Experiment 1 (fast group, implicit) and Experiment 2 (explicit).

Results

Subjects were correct on 67.6% of learning trials in the last
block (chance � 25%). For the explicit condition, the likelihood of
categorizing the shape into the target category (Q1) was 64.3%.
The average estimate of the probability that the shape belonged in
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the target category (Q2) was 53.3%. Subjects categorized the
shape into its secondary category 34.6% of the time, and the
average probability that the shape belonged in the secondary
category was 50.2%. Subjects rarely categorized the critical shapes
into categories to which they did not belong (only 2 subjects made
such categorizations). For the implicit condition, subjects caught
40.2% of trials included in the prediction analysis.

All categorizations analysis. No order effects were found,
suggesting that any strategies used during the first test did not
change the way subjects used categories in the second test. The
main effect of test mode was significant, F(1, 32) � 13.41, p �
.01, revealing that subjects used categories differently in the im-
plicit and explicit conditions. The mean prediction for the implicit
condition (M � 14.5°, SD � 17.9) was significantly different from
0°, t(33) � 4.7, p � .01, d � 0.81, but not for the explicit condition
(M � 0.7, SD � 20.7), t(33) � 0.21, d � 0.04. These results
suggest that subjects were integrating information across catego-
ries in the implicit condition but not in the explicit condition. (As
in Experiment 1, for the noncritical categories, predictions were
within 20° of the correct location 85% of the time, indicating that
all categories were learned.)

Target categorization analysis. When only explicit condition
trials in which subjects categorized squares and hearts into their
target categories were included in the analysis, the mean prediction
(M � �15.8°, SD � 27.2) was significantly different from 0°,
t(33) � 3.4, p � .01, d � 0.58. The negative mean reveals that
subjects were avoiding picking the direction reinforced by the
secondary category when they categorized the critical shapes into
their target categories. The main effect of test mode was signifi-
cant, F(1, 32) � 32.4, p � .01, revealing that subjects used
categories differently in the implicit and explicit conditions. As in
Experiments 1 and 2, subjects were (normatively) shifting toward
the direction reinforced by the secondary category when making
predictions implicitly but were (counternormatively) shifting away
from the direction of the secondary category when making predic-
tions explicitly.

This reversal is not an artifact of averaging across subjects, as
many individuals showed opposite patterns of induction (integra-
tion vs. avoidance) across the two responses. Recall that integra-
tion of category information in the implicit task would lead to a
positive number, and avoidance in the explicit task would lead to
a negative number. Eighteen subjects showed exactly this pattern
of response, integrating in the implicit task and avoiding in the
explicit task. A weaker form of the task differences would be
finding a larger (more positive) prediction in the implicit than in
the explicit condition. Another nine subjects showed this weaker
form of the task differences. Thus, 27 of the 34 subjects showed
evidence of different patterns of induction in the two tasks per-
formed one after the other, suggesting that people’s explicit and
implicit inductions may be based on different processes even when
drawn on the exact same category knowledge.

Discussion

Experiment 3 provided three important results. First, we repli-
cated both the implicit test results from Experiment 1 and the
explicit test results from Experiment 2. Subjects normatively in-
tegrated information in the implicit task and acted nonnormatively
in the explicit task. As in Experiment 2, subjects’ explicit predic-

tions of direction were tied to their categorization. When they
chose the secondary category they tended to predict the direction
associated with the secondary category; when they chose the target
category they tended to predict the direction distinct to this cate-
gory (leading to the avoidance effect). Second, the effects of the
implicit and explicit conditions occurred within subjects. The same
subject integrated information across categories during the implicit
task, even though just moments before (or moments later) he or she
segregated information from the two categories. Third, there was
no carryover from one task to the other. Performance was about the
same on each task, whether it occurred before or after the other
task. Taken together, these findings provide strong evidence for
the separability of implicit and explicit category-based induction
and for the importance of the response mode in determining
whether knowledge is integrated across categories when making
predictions.

Experiment 4

The results thus far have suggested that implicit predictions
integrate information across categories. A critical issue is to un-
derstand what aspect of the action task might be leading to these
very different results from our usual findings. Perhaps reducing
deliberate thought about categories by another means, the implicit
learning of categories, would also have this effect. Brooks, Squire-
Graydon, and Wood (2007) found that when people acquired
categories by learning how different pieces moved in a game on a
chessboard, their implicit classifications during the game were
more accurate than their verbal descriptions of category properties.
Subjects learned two categories of moving pieces by concentrating
on how each piece moved (rather than explicitly memorizing
exemplars of each category). One category could only move di-
agonally, and the other could only move in straight lines. The
pieces in the two categories had a family resemblance structure,
without defining features. When subjects had to implicitly catego-
rize the items to decide how many moves it would take a piece to
reach a destination square, they were very accurate. However, the
same subjects later often incorrectly claimed that the categories
had defining features, suggesting a division between their explicit,
verbally stated knowledge and implicit categorization.

As Brooks et al. (2007) combined implicit learning with implicit
testing (predictions of moves rather than categorization), these two
aspects cannot be separated in their task. Our earlier experiments
used explicit learning and compared implicit and explicit testing.
Implicit testing led to Bayesian integration across categories. To
test whether implicit learning of categories also leads to integra-
tion of information across categories, we had subjects learn the
categories either implicitly or explicitly and then take an explicit
test. The explicit learning group learned the categories used in
Experiments 1–3 via a classification task, as before. For the
implicit learning group, categories were never mentioned, and the
object’s color replaced category membership—all Category 1
shapes were the same color, all Category 2 shapes were the same
color, and so on. Thus, the colors provided the same predictive
information as the category labels in the explicit learning condi-
tion. Each color was associated with certain shapes and directions.
For example, all Category 1 shapes were green, so in Condition 1,
a green shape was always a square and moved in a 1 o’clock
direction half the time and a 5 o’clock direction half of the time.
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All Category 2 shapes were brown, so a brown shape always
moved in the 1 o’clock direction and was a rectangle half the time
and a square half the time. Subjects in this group learned the
categories by attempting to catch the shapes. Even though subjects
were never asked about it, paying attention to color was necessary
to the task as it provided information about where the shape would
move, just as category membership did for the explicit learning
group.

Although color provided subjects with useful information for
performing the catching task, learning of the (color) categories can
be considered implicit, since subjects were never instructed to pay
attention to or asked about the colors. In contrast, the explicit
learning group was trained to classify the shapes, so the categories
were an overt part of the learning task. This is not to say that
subjects are not able to explicitly think about color during learning.
Since color had predictive information about direction, it is likely
that they did. However, we assume that explicit thought about
color is significantly less than thought about categories in the
explicit group, where category learning was the task.

During the test phase, both groups performed the explicit pre-
diction task from Experiments 2 and 3. Recall that in this task,
shapes were presented without the category label, so that there was
uncertainty about the category to which squares and hearts be-
longed. The explicit learning group performed this version of the
task. The implicit learning group performed the same task except
that, because color played the same role as category for this group,
color was removed to create uncertainty. The main question of
interest was whether implicit learning leads to a similar effect as
does implicit responding at test. If implicit learning also promotes
integration of information across categories, predictions of direc-
tion should be shifted toward the direction reinforced by the
secondary category as the cursor placements in the implicit test
were.

Method

Subjects. Twenty-eight subjects were randomly assigned to
conditions. Data were not included for four subjects who failed to
categorize any of the critical shapes into their target category
during the explicit task. One subject was dropped for consistently
predicting that hearts would travel toward the right side of the
screen (in fact, they went to the left) during the explicit task (this
was the same 100° and –100° criterion used in the implicit task in
Experiments 1 and 3).

Materials and design. The design included two between-
subjects factors, condition and learning mode (explicit vs. im-
plicit). The category structure and stimulus materials were identi-
cal to those in Experiments 1 through 3 except for the shapes’
color. For the explicit learning group, the shapes were gray with a
black outline. For the implicit learning group, during observation
and learning there was no mention of categories, and category
label was replaced with color (all Category 1 shapes were green,
all Category 2 shapes were brown, all Category 3 shapes were
blue, and all Category 4 shapes were red). During test and post-test
(when subjects were told that the shapes had their color removed),
the stimuli were the gray shapes with black outlines used for the
explicit learning group. Thus, the two groups were equated in that
they saw the identical test items and the color/category information
was not present during testing.

Procedure. The experiment consisted of four phases: ob-
servation, learning, explicit test, and post-test. During the ob-
servation phase, the explicit learning group viewed each exem-
plar singly on the computer screen with its category label
presented in the center of the screen. Each shape appeared in the
center of the screen for 1 s, then moved off the screen in 1.25
s. All Category 1 exemplars were presented, followed by all
Category 2 exemplars, and so on. The observation phase for the
implicit learning group was identical to that of the explicit
learning group, except that there were no category labels and
the shapes were presented in the colors that corresponded to
their category—all green (Category 1) shapes, followed by all
brown (Category 2) shapes, and so on.

During the learning phase, the explicit learning group classified
each shape into one of the four categories, just as in the earlier
experiments. Each trial began with a white fixation cross for 1 s.
The shape then appeared in the center of the screen for 1 s and
moved off the screen in 1s. There was no time limit for responding.
After the subjects answered, feedback was presented on the screen
for 2.5 s. There were four learning blocks in which each of the 32
items was tested in random order.

During the learning phase, the implicit learning group per-
formed the catching task used in the implicit test phase from
Experiments 1 and 3. Subjects were told that they would see the
same shapes that they had seen in the observation phase and that
they should use what they had learned about the shapes to catch
each one with their cursor. They were instructed that it was not
possible to catch the shape in the center of the screen, so they must
place their cursor at the edge of the screen where they thought it
would be easiest to catch the shape. Subjects controlled cursor
placement and movement with the mouse. At the beginning of
each trial, a shape appeared in the center of the screen with the
cursor directly on top of it for 0.8 s. After the initial presentation
interval, the shapes momentarily disappeared and reappeared ap-
proximately 5 cm from the center in the direction of movement and
moved off the screen in 0.6 s. Subjects saw a 2.5-s feedback
message (“Good catch” or “No catch”). The timing of this phase
was slower than the implicit test in Experiments 1 and 3, as
subjects in this experiment were using this task to learn the
categories, whereas subjects in the previous experiments had al-
ready learned the categories when they performed the catching
task.

The test phase for both groups consisted of a 16-trial test in
which subjects were presented with a static shape and asked four
questions about it. There were four blocks in which all four shapes
were tested once in random order and no shape was asked about in
two consecutive trials. The shape was presented in the middle of
the screen directly below the question text. Text in brackets was
used for the implicit learning group.

Q1: What category [color] do you think the shape below most likely
belongs to [is most likely to be]?

Q2: What is the probability that this shape belongs to the category [is
the color] you just identified (0–100)?

Q3: What direction do you think the shape is most likely to travel in?
Please input your answer as a time. Please enter the HOUR VALUE
(1–12) and PRESS ENTER.
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Q4: Now please think about the MINUTE value that corresponds to
the direction you expect the shape to travel in. Please enter the
MINUTE VALUE (0–59) and PRESS ENTER.

To ensure that they had learned the categories (for the explicit
learning group) and the colors (for the implicit learning group)
equally well, after the test phase subjects reported what color/
category they thought each shape was most likely to be. Subjects
in both groups were told that we wanted to get a sense of how
much they had learned about the shapes over the course of the
experiment. The explicit learning group then performed one block
(32 trials) of the classification task that they performed during the
learning phase. The implicit learning group performed one block
of the same task except that instead of reporting the most likely
category, they reported the most likely color.

Results

Subjects in the explicit learning condition were correct on
70.2% of classifications in the last learning block. (There is no
measure of accuracy in the implicit task.) For the explicit predic-
tion task, the likelihood of categorizing the shape into the target
category/color (Q1) was 62.5% for both the explicit and the
implicit learning groups. The average estimate of the probability
that the shape belonged in the target category/color (Q2) was
58.7% for the explicit learning group and 59.8% for the implicit
learning group. Subjects in both the explicit and implicit learning
groups classified the shapes in their secondary/color category
36.4% of the time. The average estimate of the probability that the
shape belonged in the secondary category/color (Q2) was 62.2%
for the explicit learning group and 58.8% for the implicit learning
group. Results from the post-test revealed that subjects in the
implicit learning group learned the color as well as subjects in the
explicit learning group learned the categories (Ms � 70.3% and
67.0%). Thus, the two groups were very similar in overall learning
by all measures.

All categorizations analysis. As with the results of Experi-
ments 2 and 3, subjects tended to predict values around 0°. The
mean prediction (M � �5.2°, SD � 20.1) was not significantly
different than 0°, t(22) � 1.2, p � .01, d � 0.26. A 2 � 2 ANOVA
was performed, with condition and learning mode as between-
subjects factors. The main effect of learning mode was not signif-
icant, F(1, 19) � 0.6, suggesting that subjects did not use catego-
ries differently in the two learning conditions.

Target categorization analysis. When only trials in which
the target category was selected were analyzed, the mean predic-
tion (M � �27.1°, SD � 25.4) was significantly less than 0°,
t(22) � 5.1, p � .01, d � 1.07. As with the results of the explicit
task in Experiments 2 and 3, subjects in both groups avoided the
direction reinforced by the secondary category.

A 2 � 2 ANOVA was performed, with condition and learning
mode as between-subjects factors. The main effect of learning
mode was significant, F(1, 19) � 5.3, p � .05, revealing that
subjects used categories differently in the explicit and implicit
learning conditions. The mean prediction for both conditions was
negative (Ms � �16.1° and �39.2°, SDs � 24.9 and 20.8, for
explicit and implicit). The difference between the mean prediction
and 0° was significant for the explicit learning condition, t(11) �
2.2, p � .05, d � 0.65, and was highly significant for the implicit
learning condition, t(9) � 6.2, p � .01, d � 1.88. As discussed

above, both groups were avoiding predicting the direction rein-
forced by the secondary category, but the implicit learning group
did so more consistently. This is opposite to the prediction that
implicit learning would lead to more Bayesian responding and is a
replication of the results from the explicit prediction task in Ex-
periments 2 and 3.

Discussion

The results of Experiment 4 suggest that reducing explicit
thought about categories during learning does not promote inte-
gration of information across categories during induction. Al-
though categories were never mentioned to the implicit learning
subjects, they failed to show any evidence of integration but
instead showed the same pattern of results found in the explicit
learning group (and in Experiments 2 and 3). When they picked the
target category, they tended to predict the direction distinct to it,
and when they chose the secondary category they tended to choose
the direction associated with it. Thus, as suggested by the results of
the previous experiment, response mode is critical to how category
information is used. Even when subjects have only implicitly
learned categories, they use them in the same nonnormative man-
ner seen in the results of the explicit tasks of Experiments 2 and
3—that is, they predict a direction opposite to that of the secondary
category.

We speculate that this is because although categories are never
mentioned, subjects are still able to explicitly consider them. For
category-based induction tasks where Bayesian responding has
been found, it seems unlikely that subjects would have been able
to consider each category separately. In our implicit prediction task
(Experiments 1 and 3), the timing of the task is likely too fast to
allow for explicit consideration of the possible categories, and for
the tasks used by Tenenbaum and his colleagues, the categories are
numerous (or infinite) and somewhat arbitrary, making it unlikely
that subjects explicitly consider them (see our discussion of this
work in the introduction). In Experiment 4, however, there were
only four colors. When asked to predict what direction a square
might go in, subjects could easily think about the directions that
green shapes go in separately from the directions that brown
shapes go in. Thus, during the induction task, when asked what
color the shape is most likely to be, subjects may have then
considered information about the predicted feature for each cate-
gory (color) separately or only for the most likely category.

General Discussion

The experiments found that identical category knowledge leads
to different predictions in implicit versus explicit induction. See
Table 2 for a summary of results. Implicit responses showed
integration of information across categories in a Bayesian manner
(Experiment 1), whereas explicit responses showed suboptimal use
of categories, such that subjects did not integrate information
across categories and even avoided features reinforced by the
secondary category when categorizing objects into their most
likely category (Experiments 2 and 4). The two different patterns
were found even within individual subjects during one session
(Experiment 3). When under time pressure, people showed greater
use of multiple categories, suggesting that the “more implicit” the
response, the greater the multiple category use, because there is
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less chance for interference from explicit strategies (Experiment
1). The results of Experiment 4 suggest that the use of multiple
categories found when subjects made implicit predictions was not
simply a result of reducing explicit thought about categories but
requires implicit responding in particular.

Relation to Previous Results

These findings suggest that the suboptimal use of categories
consistently found in previous studies of category-based induction
is, at least in part, due to the response mode. In previous studies,
subjects categorized an item and then made an explicit verbal
prediction. As shown in Experiment 2, this type of responding
leads to nonnormative category use (below we discuss the avoid-
ance effect). Implicit inductions used multiple categories in a way
that approximates Bayesian models.

The notion that quick, automatic judgments can be more nor-
mative than strategic, effortful ones has been echoed in research on
decision making under risk, which has found that motor strategies
sometimes are superior to decision making in similar situations
(Trommershäuser et al., 2008). It seems that more explicit reason-
ing can interfere with good decision making because of “its se-
quential and low-capacity nature” (Evans, 2008, p. 267), which, at
least in the case of category-based induction, can lead to the
disregarding of relevant information. Indeed, our results suggest
that implicit processes access and integrate information in a way
that explicit processes often do not.

The current findings help explain the discrepancy between stud-
ies of induction in reasoning versus perception and action. Previ-
ous category-based induction tests have been explicit, whereas
perception and action tests are likely implicit. In perception and
action studies, subjects are usually not asked to make predictions
or give probability ratings but rather to make quick motor re-
sponses.

Interestingly, it appears that useful information is also disre-
garded when perceptual judgments are made in ways similar to our
explicit task. Bayesian models have been successful in describing
much behavior in perceptual tasks, suggesting that human observ-
ers perform them by considering multiple hypotheses about the
underlying structure of the sensory evidence. There is evidence,
however, that when subjects select a hypothesis prior to making a
response (much as our subjects select a category before making

their inference), they act as if there is only one hypothesis. For
example, in one study (Jazayeri & Movshon, 2007), subjects
viewed displays of randomly moving dots with a small proportion
moving in the same direction, to be identified by the subject. After
the motion stopped, a bar appeared at the edge of the display, and
subjects had to decide if the nonrandom motion of the dots was
clockwise or counterclockwise relative to the bar (i.e., commit to
a hypothesis about the direction). They then marked their estimate
of the exact direction of the motion with the mouse. The initial
decision task greatly reduced the accuracy of their direction esti-
mates. Stocker and Simoncelli (2008) fit these data to a model in
which people ignored hypotheses inconsistent with their initial
clockwise–counterclockwise judgment and considered only hy-
potheses consistent with it. The model fit the data well, suggesting
that when an observer chooses one hypothesis as most likely (the
dots’ direction relative to the reference mark), subsequent judg-
ments assume that this hypothesis is true. Stocker and Simoncelli
argued that this disregard for alternatives, which they call simpli-
fication by decision, is a useful strategy because it frees up re-
sources in complex perceptual tasks.

Like our own task, this one required people to make an initial
judgment and then a more detailed one. Although in both tasks
subjects were not certain that their initial judgment was correct,
they acted as if it was when making subsequent judgments (see
below). The conscious, unspeeded nature of these judgments allow
the initial decision to warp the evaluation of evidence, even in a
purely perceptual task.

Implications for Everyday Inductions

Recall our original example of the class cutter who cannot make
out the identity of another person in the parking lot and needs to
predict whether that person will send him to the principal’s office
in order to avoid punishment. As with many real-life examples of
category-based induction, our class cutter could have made his
prediction either explicitly, by deliberately thinking about how
much the person looks like another student or a teacher and then
making a strategic decision about his next action, or implicitly, by
simply acting instinctively without overtly thinking about the
person’s identity. Our results show that the same category infor-
mation may lead to different predictions depending on how they
are made. This is important, because many decisions are based on
such inferences.

Our paradigm of explicit induction often asks subjects to iden-
tify an item’s most likely category prior to making inductions. This
has most often been the case in experiments with artificial cate-
gories that subjects might not spontaneously use (e.g., Murphy et
al., 2012). In experiments using real-world categories, such ques-
tions can be omitted or placed at the end of the test (e.g., Ross &
Murphy, 1996; Zhu & Murphy, 2013). Asking this question in the
artificial category case probably increases the rate of single-
category use, even though subjects consistently rate that they are
uncertain of their answer (Hayes & Newell, 2009; Murphy et al.,
2012). In real life, familiar categories are likely to come to mind
without any question or instruction. Imagine, for example, that
while walking through a park, you observe a sudden rustling in the
plants along the walkway, and you wonder whether you should
avoid the path near this spot. Two of the authors can confirm that
in New York City the question “Is it a squirrel or a rat?” comes to

Table 2
Mean Predictions for Critical Shapes, in Degrees

Experiment

Cursor placement,
M (SD)

Prediction of direction,
M (SD)

Implicit task
Explicit task

(all categorizations)

Explicit task
(target

categorizations)

1, fast group 16.8 (18.4)
1, slow group 6.4 (14.6)
2 �4.6 (19.1) �32.5 (24.6)
3 14.5 (17.9) 0.7 (20.7) �15.8 (27.2)
4 �5.2 (20.1) �27.1 (25.4)

Note. Positive cursor placements indicate integration of information
across categories. Negative placements indicate the avoidance effect. SD �
standard deviation.
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mind without prompting from any questionnaire. However, it is
also possible that such a pedestrian would drift to the far side of the
path without necessarily deciding the answer to that question. If
you obtain enough evidence to identify the animal as a squirrel,
you might then overrule that tendency and walk near the rustling
without worry. In short, real-life inductions probably involve both
explicit and implicit inductions in a complex interplay.

As with some work in decision making under risk (see Trom-
mershäuser et al., 2008), in our induction task, motor responses
seem to outperform explicit, strategic ones. However, whether
explicit or implicit processing is more normative clearly depends
on task requirements. Associative, intuitive judgments have been
cited as leading to errors in prediction that can be corrected by a
more reflective reasoning system (Kahneman & Frederick, 2002;
Kahneman & Tversky, 1973; Sloman, 1996). In social psychology,
a similar distinction has been made between automatic and con-
trolled processes in prejudice. Automatic processes are often as-
sociated with stereotype activation (a form of category-based in-
duction), which, in low-prejudice people, conflicts with explicit
attitudes and is inhibited in favor of their explicit beliefs (Devine,
1989). Thus, the explicit system’s bias to disregard or avoid
information from alternative categories (that made it less norma-
tive in our task) could, in other cases, lead to more normative
responses. Our research shows that this distinction is crucial for
understanding when category-based predictions are more likely to
be accurate or inaccurate.

In short, we do not conclude that “explicit � inaccurate” and
“implicit � accurate” in category-based inductions. Rather, the
two kinds of tasks involve different processes that may lead to
different outcomes, and whether those outcomes are good or bad
will depend on the particular categories and their associated prop-
erties.

Explicit Induction and the Avoidance Effect

The main finding of these experiments was that implicit induc-
tion led to integration of information across categories, contrary to
the predominant use of a single category in previous research using
explicit prediction tasks. We found, as expected, no evidence of
integration in explicit induction; however, closer examination of
these data revealed an interesting and surprising effect. In this
section we examine the explicit induction results in more detail.

We provided two analyses of the explicit task results: including
all trials or only trials in which the item was categorized as being
in the target category. Neither showed integration as the implicit
task did, but they showed rather different results that are worth
discussion. In one analysis, which was comparable to the analysis
of the implicit task, all trials were included. This analysis generally
found that predictions on average were near the middle of the two
possible directions of the target category and did not differ de-
pending on the direction the shapes moved in the secondary
category. Thus, when all the explicit test trials were used, there
was no evidence that people used the secondary category in
making their judgments.

In previous work, researchers have generally looked only at
trials in which subjects selected the target category, because the
experiments were designed to contrast single- versus multiple-
category use, and the experimental designs allowed a clear test
only for such trials. The results in most of this past work showed

that people focused on a single category, and their judgments were
not influenced by the secondary category. In the present experi-
ments, however, the analysis of only target categorizations showed
a very unexpected result, the avoidance effect. This surprising
result could suggest that people were influenced by multiple cat-
egories during induction but somehow in the wrong direction.
Although a definitive analysis of this avoidance effect requires
further research, we propose that subjects were actually not using
multiple categories during induction per se.

In Condition 1, Category 1 stimuli went equally often to 1 and
5 o’clock; Category 2 stimuli all went to 1 o’clock. Our proposal
is that after learning these categories, subjects came to associate
Category 2 stimuli with 1 o’clock and Category 1 with 5 o’clock.
During the learning phase, only Category 1 stimuli ever went to
5 o’clock. Furthermore, since all Category 2 stimuli went to 1
o’clock, that direction is the only sensible prediction for items in
that category. Thus, even though two directions were equally
frequent in Category 1, people came to think of it as the 5 o’clock
category, due to that direction’s distinctive relationship with the
category. The phenomenon seems related to the “base-rate ne-
glect” phenomenon discovered by Gluck and Bower (1988), in
which features that in fact occurred equally often in two categories
(i.e., the cue validity was equal for both categories) became more
associated with the category for which they were a distinctive
feature.

As a result of this learning, when people decided that a square
was most likely in Category 1, they often chose its distinctive
direction (5 o’clock); when they decided that a square was in
Category 2, they chose its direction (1 o’clock). On this account,
neither induction reflects considering both categories but rather
consideration of only the category initially selected and the direc-
tion associated with it. This is in line with the singularity principle,
which suggests that people are biased to consider only one possi-
bility at a time. Indeed, past work in explicit induction has shown
that which category people choose has an enormous effect on their
inductions even when they are very uncertain that their categori-
zation is correct (Lagnado & Shanks, 2003; Murphy et al., 2012,
Experiment 4).

If this explanation is correct, the reason that the avoidance effect
has not been found in previous studies probably relates to the
category structure and learning procedures followed here. The
secondary category structure in previous research generally had a
variety of feature values. In the present studies, the secondary
category had a single, universal direction. Our suggestion is that
this direction became strongly associated with the secondary cat-
egory and, by contrast, not the expected direction of the target
category (as in other category contrast effects, Krueger & Roth-
bart, 1990).

Furthermore, the feedback-based category learning of the pres-
ent experiments may have caused the association of the distinctive
feature to the target category, due to processes of error-driven
learning (as in Gluck and Bower’s learning task). We conducted
one test of this idea in a follow-up experiment in which there was
no feedback-based category learning. Using the same category
structure as the experiments reported here, we presented 21 sub-
jects with visual displays corresponding to the four categories,
with shapes and arrows indicating the direction with which each
shape was associated. That is, all items were simultaneously pres-
ent in one display. We asked subjects to predict the direction of
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new shapes (e.g., a square, which occurred more often in Category
1 than in Category 2), as in our main experiment. Here we found
very few avoidance responses: Subjects picked the direction dis-
tinctive to the target category only 12% of the time. Thus, the
avoidance effect in the present data probably requires feedback-
based learning to manifest itself, as Gluck and Bower (1988)
suggest.

Nature of the Implicit/Explicit Distinction

We have referred to our primary manipulation as changing the
response mode from explicit to implicit. This is a shorthand to
refer to multiple differences between the two response modes
(described below). As we commented in the introduction, it is not
clear that this distinction corresponds to Systems 1 and 2 referred
to by two-system theorists (Evans, 2007; Kahneman, 2011). There
is some similarity, such as System 1’s automatic operation with no
sense of voluntary control (Kahneman, 2011, p. 105), like our
implicit inductions. But our explicit subjects also seemed to oper-
ate in ways consistent with System 1, by focusing on a single, most
likely possibility. Furthermore, it is not clear that our distinction
requires one to posit separate systems. What we do claim, how-
ever, is that making inductions in these ways leads to different
induction processes in which category information is used differ-
ently.

In many years of studying explicit inductions in this task, we
have found that most people do things such as count up the number
of items in each category, overtly choose one or two categories on
which to focus, and even do probability calculations to estimate
likelihoods. These can be seen in markings and calculations sub-
jects write on response forms. People seem to think things like,
“There are seven squares in Category 1 but five in Category 2, so
it’s most likely in Category 1. The squares in Category 1 are
mostly red, so I’m going to predict red.” Subjects confirm such
strategies when systematically questioned (Murphy et al., 2012).
Finally, many of the phenomena of induction under uncertainty
suggest that only one category is in working memory, and manip-
ulations that place two categories in working memory then lead to
Bayesian reasoning (Murphy et al., 2012; Ross & Murphy, 1996).

Our implicit task discourages a single-category focus and en-
courages the use of learned associations, through a number of
means. First, time pressure prevents the counting and calculation
process. Indeed, the older authors found the fast condition of
Experiment 1 (used in all the subsequent implicit conditions) to be
almost too fast to successfully perform. A square appears, and you
must immediately move the cursor to where it might go. Retrieval
of past exemplars, calculations of probabilities, and even simple
counting are not possible. Second, and related to this, the speed
seems to preclude the use of working memory and attention that
permit subjects to focus on a single category or select which
exemplars to input to the calculations. Third, the implicit condition
did not ask about categories, whereas the explicit task did. Fourth,
the motor task essentially replicates the past motions of the objects,
so that the learned associations between shape and direction can be
directly used to make predictions.

We do not now know whether these individual variables would
be sufficient to create the differences we observed, nor can we
state for certain that the implicit responses come from completely
different psychological and neural systems than the explicit re-

sponses. One likely important variable is that the categories were
well learned, allowing prior associations to direct motor actions.
Category-based induction has also been tested in novel categories
that are (partially) presented during the test itself (Murphy & Ross,
1994). It is hard to see how the implicit responding seen in our task
could take place in such a situation: Because the exemplars are
examined at the time of induction, the objects’ properties are not
yet associated in memory. However, in real-world situations with
familiar categories, learned associations could well render a
Bayesian response.

In summary, our goal was to show that people may be more
normative when they must respond quickly using learned associ-
ations than when they carefully consider the categories. This was
clearly achieved, as our results show that the inductions are very
different in these two conditions—correctly integrating informa-
tion across categories or showing nonnormative use of category
information. Exactly how our tasks might correspond to other
proposed distinctions will require further research.

Related to this issue, not everything that might make induction
implicit in some respect will necessarily improve induction. The
results of Experiment 4 suggest that response mode is critical, as
reducing explicit thought about categories during learning did not
lead to normative category use when responses were made explic-
itly. It is clearly a question for future research to investigate other
aspects of implicit processing.

As discussed earlier, Tenenbaum and his colleagues have suc-
cessfully modeled people’s category-based inferences with Bayes-
ian models (Griffiths & Tenenbaum, 2006; Tenenbaum, 1999,
2000). These inferences were not reported with an action response,
yet people seemed to be integrating information across categories
in a normative manner as they do with action tasks. Our explana-
tion of this is that these subjects did not consider each category
separately. As discussed in the introduction, it seems highly un-
likely that subjects in these tasks are able to explicitly consider the
possible categories, which were numerous and somewhat arbitrary
(e.g., many ranges of numbers). Thus, although we would not
argue that those inductions use the same processes as our own
implicit task, they do share the property of not encouraging explicit
consideration of potential categories. It might be interesting to ask
people to choose from among possible categories in such tasks and
see if their responses become less Bayesian, as in Jazayeri and
Movshon’s (2007) perceptual task.

Future Directions

The inductions made in these experiments were all relatively
simple. Exemplars had only two features and belonged to only one
of two potential categories. Real-world items, however, have more
than two features and could be ambiguous among more than two
possible categories. It is unclear precisely how more complex
circumstances might affect both implicit and explicit induction.
Would implicit induction still be able to come to a Bayesian
answer given the greater number of associations now involved?
When making explicit inductions, it seems subjects might be even
more likely to disregard information to simplify calculations, as
having to consider more than two categories or features is more
taxing on mental resources. That might have the effect of reducing
both the avoidance effect and integration across categories. Further
investigation is necessary to examine these issues, as understand-
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ing how we use category information and whether the implicit/
explicit distinction holds when making predictions about complex
items is critical for understanding real-world category-based in-
duction.

Our results likely also have implications for the related situation
of cross-classification: When you know an item belongs to more
than one category, what category or categories do you base your
inductions on? The ice cream that you are thinking about eating
belongs to the categories of dairy foods and desserts. The student
that you are meeting with belongs to the category of student, but
also to female and teenager. Previous research has shown that
people often show a single-category focus when making induc-
tions about cross-classified items (Murphy & Ross, 1999), and it
has been suggested that the activation of one category inhibits
activation of other possible categories (Macrae, Bodenhausen, &
Milne, 1995). As when reasoning with uncertain categories, people
are able to use category information normatively when making
inferences about a cross-classified item (Hayes, Kurniawan, &
Newell, 2011), but they often do not. The distinction between
implicit and explicit processes may also be useful in characterizing
situations when people use category information more norma-
tively.

The implicit–explicit distinction also has implications for our
interactions with people. People are the most readily cross-
classified objects (Bodenhausen, Todd, & Becker, 2007), so pre-
dictions about people likely also do not take into account all the
relevant information available. In fact, research in social psychol-
ogy has suggested that a single category comes to dominate the
perception of an individual (Bodenhausen & Macrae, 1998;
Bodenhausen & Peery, 2009). However, judgments about people
without explicit categorization no doubt occur as well (e.g., de-
ciding how far to sit from someone). Understanding predictions
about people is particularly important, because each different
identity leads to different expectations about a person, which in
turn influence interactions with him or her.

Conclusion

When people make category-based inductions with uncertainty,
they often use category information suboptimally and do not
integrate information across categories following normative prin-
ciples. Our results suggest that the suboptimal use of categories is,
at least in part, due to the explicit response mode normally used in
category-based induction experiments. When subjects in our ex-
periments made inductions implicitly, they were able to appropri-
ately integrate information across categories. These results dem-
onstrate that in some cases our category-based inferences are not
necessarily determined only by category knowledge but also by
how these inferences are made.
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Appendix A

Experiment 1 Individual Response Histograms

(Appendices continue)

Figure A1. Histogram of cursor placements for the fast group performing the implicit induction task.
Normative use of categories is evidenced by positive shifts from 0°. Each bin includes a 20° range and is labeled
by the largest degree it includes.

Figure A2. Histogram of cursor placements for the slow group performing the implicit induction task.
Normative use of categories is evidenced by positive shifts from 0°. Each bin includes a 20° range and is labeled
by the largest degree it includes. Note that the y-axis scale is different from that of Figure A1.
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Appendix B

Experiment 2 Individual Response Histograms

Received April 5, 2012
Revision received January 24, 2013

Accepted January 27, 2013 �

Figure B1. Histogram of predictions when target category was picked in the explicit induction task. Normative
use of categories is evidenced by positive shifts from 0°. Each bin includes a 20° range and is labeled by the
largest degree it includes.

Figure B2. Histogram of predictions when the target category was not picked in the explicit induction task.
Normative use of categories is evidenced by positive shifts from 0°. Each bin includes a 20° range and is labeled
by the largest degree it includes. Note that the y-axis scale is different from that of Figure B1.
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